Polycomb Controls Gliogenesis by Regulating the Transient Expression of the Gcm/Glide Fate Determinant

نویسندگان

  • Anna Popkova
  • Roberto Bernardoni
  • Celine Diebold
  • Véronique Van de Bor
  • Bernd Schuettengruber
  • Inma González
  • Ana Busturia
  • Giacomo Cavalli
  • Angela Giangrande
چکیده

The Gcm/Glide transcription factor is transiently expressed and required in the Drosophila nervous system. Threshold Gcm/Glide levels control the glial versus neuronal fate choice, and its perdurance triggers excessive gliogenesis, showing that its tight and dynamic regulation ensures the proper balance between neurons and glia. Here, we present a genetic screen for potential gcm/glide interactors and identify genes encoding chromatin factors of the Trithorax and of the Polycomb groups. These proteins maintain the heritable epigenetic state, among others, of HOX genes throughout development, but their regulatory role on transiently expressed genes remains elusive. Here we show that Polycomb negatively affects Gcm/Glide autoregulation, a positive feedback loop that allows timely accumulation of Gcm/Glide threshold levels. Such temporal fine-tuning of gene expression tightly controls gliogenesis. This work performed at the levels of individual cells reveals an undescribed mode of Polycomb action in the modulation of transiently expressed fate determinants and hence in the acquisition of specific cell identity in the nervous system.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Glide/Gcm fate determinant controls initiation of collective cell migration by regulating Frazzled

Collective migration is a complex process that contributes to build precise tissue and organ architecture. Several molecules implicated in cell interactions also control collective migration, but their precise role and the finely tuned expression that orchestrates this complex developmental process are poorly understood. Here, we show that the timely and threshold expression of the Netrin recep...

متن کامل

Glial differentiation does not require a neural ground state.

Glial cells differentiate from the neuroepithelium. In flies, gliogenesis depends on the expression of glial cell deficient/glial cell missing (glide/gcm). The phenotype of glide/gcm loss- and gain-of-function mutations suggested that gliogenesis occurs in cells that, by default, would differentiate into neurons. Here we show that glide/gcm is able to induce cells even from a distinct germ laye...

متن کامل

Huckebein-mediated autoregulation of Glide/Gcm triggers glia specification.

Cell specification in the nervous system requires patterning genes dictating spatio-temporal coordinates as well as fate determinants. In the case of neurons, which are controlled by the family of proneural transcription factors, binding specificity and patterned expression trigger both differentiation and specification. In contrast, a single gene, glide cell deficient/glial cell missing (glide...

متن کامل

Precocious expression of the Glide/Gcm glial-promoting factor in Drosophila induces neurogenesis.

Neurons and glial cells depend on similar developmental pathways and often originate from common precursors; however, the differentiation of one or the other cell type depends on the activation of cell-specific pathways. In Drosophila, the differentiation of glial cells depends on a transcription factor, Glide/Gcm. This glial-promoting factor is both necessary and sufficient to induce the centr...

متن کامل

Gcm/Glide-dependent conversion into glia depends on neural stem cell age, but not on division, triggering a chromatin signature that is conserved in vertebrate glia.

Neurons and glia differentiate from multipotent precursors called neural stem cells (NSCs), upon the activation of specific transcription factors. In vitro, it has been shown that NSCs display very plastic features; however, one of the major challenges is to understand the bases of lineage restriction and NSC plasticity in vivo, at the cellular level. We show here that overexpression of the Gcm...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2012